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Abstract-The ability to distribute cryptographic keys has been 
a challenge for centuries. The Diffie-Hellman was the first 
practical solution to the problem .However, if the key 
exchange takes place in certain mathematical environments, 
the key exchange become vulnerable to a specific Man-in-
Middle attack, first observed by Vanstone. This paper is an 
effort to solve a serious problem in Diffie-Hellman key 
exchange, that is, Man-in-Middle attack. In this paper we 
have used RSA algorithm along with Diffie-Hellman to solve 
the problem. We explore the Man-in-Middle attack, analyse 
the countermeasures against the attack. 
 
Index Terms-Cryptography, Diffie-Hellman, Man-in-Middle 
attack, primality testing. 

 
INTRODUCTION 

Cryptography and encryption/decryption methods fall into 
two broad categories- symmetric and public key. In 
symmetric cryptography, sometimes called classical 
cryptography, parties share the same encryption/decryption 
key. Therefore, before using a symmetric cryptography 
system, the users must somehow come to an agreement on 
a key to use. An obvious problem arises when the parties 
are separated by large distances which is commonplace in 
today’s worldwide digital communications. If the parties 
did not meet prior to their separation, how do they agree on 
the common key to use in their crypto system without a 
secure channel? They could send a trusted courier to 
exchange keys, but that is not feasible, if time is a critical 
factor in their communication. 
The problem of securely distributing keys used in 
symmetric ciphers has challenged cryptographers for 
hundreds of years. If an unauthorized user gains access to 
the key, the cryptographic communication must be 
considered broken. Amazingly, in 1977, Whitfield Diffie 
and Martin Hellman published a paper in which they 
presented a key exchange protocol that provided the first 
practical solution to this dilemma. The protocol, named the 
Diffie-Hellman key exchange (or key agreement) protocol 
in their honour, allows two parties to derive a common 
secret key by communications over an unsecured channel, 
while sharing no secret keying material at prior .  
Before conducting the key exchange using the Diffie-
Hellman protocol, the parties must agree on a prime 
number that defines the mathematical environment in 
which the key exchange will take place. If the prime 
number is large enough, a brute force attack to find the 
secret key becomes infeasible. However, if the two parties 
agree on certain prime numbers, an active adversary can 
compromise their communication. 

This paper investigates the Diffie-Hellman protocol and the 
difficulty of the discrete logarithm problem the protocol 
relies on. We then analyse the man-in-middle attack 
described above by developing an algorithm to conduct the 
attack. We then consider methods to defend against the 
attack and demonstrate their effectiveness.  
 

BACKGROUND AND REVIEW 
Before beginning a discussion of the Diffie-Hellman 
protocol and the man-in-middle attack, we investigate and 
present some basic definitions and theorems. This 
information is available in any standard algebra text, such 
as Fraleigh’s Abstract Algebra, or discrete mathematics 
text, such as Rosen’s Discrete Mathematics and Its 
Applications. It is assumed the reader is familiar with 
common mathematical, logical, and set notation. 
 
NUMBER THEORY 
If a and b are integers and a ≠ 0 , we say that a divides b if 
there is an integer c such that b = ac . When a divides b we 
say that a is a factor of b and that b is a multiple of a. The 
notation a\b denotes a divides b . Given two integers a and 
b, both non-zero, the largest integer d such that d\a and d\b 
is called the greatest common divisor of a and b. The 
greatest common divisor of a and b is denoted by gcd(a,b). 
The integers a and b are relatively prime, if their greatest 
common divisor is one. 
Every positive integer greater than one is divisible by at 
least two integers, itself and 1. If these are its only factors, 
integer is called a prime. A positive integer that is greater 
than 1, and not prime, is called composite. The 
Fundamental Theorem of Arithmetic states that every 
positive integer greater than one can be written uniquely as 
a product of two of more primes, where the prime factors 
are written in order of non-decreasing size. Given a positive 
integer, n , let the prime factorization of n be denoted by 
       k 
n=ПPi

αi 

       i=1 

In some situations, we care only about the remainder of an 
integer when it is divided by some specified positive 
integer, denoted by m. If a and b are integers, then a is 
congruent to b modulo m if m divides a -b. We use the 
notation a ≡ b (mod m) to indicate that a is congruent to b 
modulo m. 
The great French mathematician Pierre de Fermat (1601–
1655) demonstrated that the congruence a p-1 =1 (mod p) 
holds when p is a prime, and this gives us a theorem that 
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will prove crucial in our analysis of the man-in-the-middle 
attack. 
Fermat’s Theorem: If a ϵ Z and p is a prime not dividing a, 
then p divides ap-1, that is,  
   ap-1 ≡1 (mod p) . 
Euler gave a generalization of Fermat’s theorem, but we 
must first define Euler’s Totient Function. Commonly 
referred to as Euler’s Phi Function, the function gives the 
number of integers less than or equal to n which are 
relatively prime to n , and is denoted by ϕ(n). It is not hard 
to show that, if 
 
      k 
n=П Pi

αi     , then 

       i=1   

                k 
ϕ(n)=n ПPi

αi (1-1/Pi) 
           i=1 

Euler’s Theorem: If a ϵ Z and is relatively prime to n, then 
aϕ(n)- 1 is divisible by n, that is, 
 aϕ(n)  ≡1 (mod n). 
 
GROUP THEORY 
A group <G,*> is a set G, closed under a binary operation 
*, such that the following axioms are satisfied: 
Associativity: For all a, b, c ϵ G a*(b*c)=(a*b)*c 
Identity: There is an element e in G such that for all a ϵ Z 
 a*e=e*a=a 
Inverse: Corresponding to each a ϵ G, there exist an 
element a’ such that 
 a*a’=a’*a=e 
If the set G has a finite number of elements. In this case, 
the number of elements is called the order of G, denoted by 
|G |. 
If n is a prime p, then the set Z*p=Zp-{[0]p}  forms a group 
under multiplication modulo n . It is a necessary 
requirement to remove the zero class because zero has no 
inverse under multiplication. <Z*p,.>,is the multiplicative 
group of the set of congruence classes of prime integers. 
The Diffie-Hellman key exchange protocol sets this group 
as the environment for the key agreement. 
Sub Group 
Let G be a group and H be its subset. The subset H is called 
subgroup of G if following conditions are satisfied. 
1. if a, b ϵ H, the product ab also belongs to H. 
2. e(identity element of G) belongs to H. 
3.if a ϵ H its inverse also belongs to H. 
Lagrange’s Theorem: Let H be a subgroup of a finite 
group G. 
Then the order of H is a divisor of the order of G. 
This powerful theorem makes the attack we will analyse 
later possible. 
We know the order of <Z*p,.>  is p -1. The two properties 
mentioned above tell us that any subgroup of <Z*p,.>  will 
also be cyclic and the order of the subgroup will be a 
divisor of p -1. 
Groups of Prime Order 
A group g is called a group of prime order if it is: 
1. A cyclic group having a prime number as its order. 

2. isomorphic to the quotient of group of integers by a 
subgroup generated by aprime. 

3. a simple abelian group. 
4. adittive group of finite prime field. 
 
The number of distinct subgroups of a group are either 0 or 
congruent to 1(mod p). 
Let G be a group and H, K be its subgroups each of order p, 
where p is a prime then, 
H∩K = {e} or H=K. 
 

PRIMALITY TESTING 
Suppose a large integer is given. Sometimes we want to 
determine whether the number is composite or prime. A 
primality test is an algorithm used for this, that is, for 
determining whether an input number is prime. Primality 
tests can be deterministic and probabilistic. Deterministic 
primality tests prove with certainty whether a number is 
prime or composite. Probabilistic primality tests tell us a 
number is composite or probably prime. 
Miller-Rabin Primality Test 
The Miller-Rabin Primality Test is an efficient probabilistic 
algorithm to test for primality based on the idea of strong 
pseudoprimes. Consider an odd composite number n and n 
-1 = d .2s with d odd. n is a strong pseudoprime if either  
ad  ≡1 (mod n) or ad.2r ≡-1 (mod n) with r = 0,1,...s -1. The 
Carmichael numbers are Fermat pseudoprimes for every 
base. However, a composite number can only be a strong 
pseudoprime to at most one quarter of all bases. 
The algorithm is as follows: 
Choose a random integer aϵ[2, n - 2]. If ad ≠ 1 (mod n) and 
ad.2r ≠-1(mod n) for all 
 r = 0,1,...s -1, then a is called a witness and n is 
composite. Otherwise, n is a strong probable prime to base 
a. If n > 9 and is odd composite, the probability that the 
algorithm will fail to produce a witness for n is <1/ 4. The 
probability that we fail to find a witness after k iterations is 
<1/ 4k. We can make this probability as small as we desire 
with a large number of iterations. For instance, if we 
wanted to ensure the probability of calling a composite 
number a prime is less than 10-6, we must compute 10 
iterations or more. 
The Miller-Rabin test is very fast and has a complexity of 
O((log n)3 ). Of course, because it is probabilistic, there is a 
chance of the test returning a number as prime when it is in 
fact composite. The Miller-Rabin test offers us both speed, 
as compared to other primality tests, and the ability to 
control the probability of error and will be our tool of 
choice. 
 

DIFFIE-HELLMAN AND THE DISCRETE LOGARITHM 
THE DIFFIE-HELLMAN PROTOCOL 
The Diffie-Hellman protocol provided the first practical 
solution to the key distribution problem, allowing two 
parties, never having met in advance or shared keying 
material, to establish a shared secret by exchanging 
messages over an open channel. The key can then be used 
to encrypt subsequent communications using a symmetric 
key cipher. The security rests on the intractability of the 
Diffie-Hellman problem and the related problem of 
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computing discrete logarithms. We will call the two parties 
conducting the key exchange “Alice” and “Bob.” 
 
Protocol steps: 
1. A prime number p and generator α of Z* p (2 ≤ α ≤  p - 2) 
are 
selected and published. 
2. Alice chooses a random secret x, 1≤ x ≤ p - 2, and sends 
Bob 
αx mod p. 
A B: αx mod p 
3. Bob chooses a random secret y, 1 ≤ y ≤ p - 2, and sends 
Alice 
αy mod p. 
B A: αymod p 
4. Bob receives αx and computes the shared key as K = 
(αx)y mod p. 
5. Alice receives αy and computes the shared key as K= 
(αy)x mod p. 
 
if the prime number used is large enough, no computing 
power available today can exhaust the key space. For 
instance, most applications recommend 1024-bit primes. 
This correlates to a number of about 300 digits and makes 
searching the key space one by one infeasible. 
 

THE DISCRETE LOGARITHM 
Eve has more information than just the fact that the key 
resides in the interval  
(1, p -1). Because the exchange occurs over an open 
channel, Eve knows αx and αy as well. If β ≡ αx (mod p) and 
γ ≡ αy(mod p), then p ,α ,β and γ are known. All Eve has to 
do is solve αx≡ β (mod p) for x or αy≡ γ (mod p) for y. Once 
x or y are known, Eve simply raises αx to y or αy to x and 
arrives at the secret key K . However, if p is large, solving 
αx≡ β(mod p) for x in general is considered difficult. The 
problem of finding x if αx is known as the discrete 
logarithm problem (DLP), often abbreviated x=Lα(β). 
The difficulty of solving the DLP yields useful 
cryptosystems. Diffie-Hellman key exchange protocol, El 
Gamal encryption system, and the Digital Signature 
Algorithm all rely on the difficulty of solving the DLP. In 
2005, a 168 digit prime (556 bits) discrete logarithm was 
computed, setting a record at that time. The record 
factorization up to then was 200 digits (663 bits). 
 

MAN-IN-THE-MIDDLE ATTACK 
THEORY BEHIND THE ATTACK 
Wiener and Van Orschot noted that, if certain primes are 
used, a potentially fatal protocol attack on the Diffie-
Hellman key exchange protocol becomes possible. The idea 
is based on forcing the parties to agree on a shared key that 
resides in a subgroup of the cyclic group Z*p. If the order 
of the subgroup is small enough, an adversary can 
exhaustively search the subgroup, retrieve the secret key, 
and eavesdrop on the communication of Alice and Bob. 
For instance, consider the case when the prime used for the 
key exchange is of the form p =2q +1 , where q is a prime. 
Then, αq=α(p-1)/2 . 
 

Claim: α(p-1)/2 is an element of order two. 
Proof: By Fermat’s little theorem, αp-1=1 mod p. So α(p-1)/2 
must be +1 or -1. But if  
α(p-1)/2 =1 then α must have order ( p -1)/ 2 . This is a 
contradiction, because α is a primitive root of Z*p and must 
be of order p -1. So α(p-1)/2= -1 and is an element of order 
two. 
 
If Alice and Bob respectively send each other 
unauthenticated messages and αx, and αy active intruder 
may substitute (αx  )q for the first, and (αy )q for the second. 
When Alice receives  (αy )q  and computes  (αqy )x and when 
Bob receives  (αx )q and computes  (αqx )y , they will arrive 
at only one of two possible values, +1 and -1. The intruder 
can then try both possible keys and gain access to Alice and 
Bob’s secret communications. Obviously, if Alice and Bob 
demonstrate vigilance, they will agree in advance to 
suspect any key agreement that arrives at +1 or -1. 
 
We can generalize the situation if Alice and Bob use a 
prime number of the form 
 p = Rq +1, where R is a small integer and q is again a large 
prime. 
Claim: α(p-1)/R is an element of order R. 
 
Proof: Raising α(p-1)/R to consecutive powers, starting with 
0, we get: 
(α(p-1)/R )=1, (α(p-1)/R)2, (α(p-1)/R)3, …. , (α(p-1)/R)= αp-1=1 
 
This produces a list of R different values. Continuing after 
R , 
(α(p-1)/R )(R+1)=(α(p-1)/R )R. (α(p-1)/R )=1.(α(p-1)/R ), 
(α(p-1)/R )(R+2)= (α(p-1)/R )R. (α(p-1)/R )2=1. (α(p-1)/R )2, ……. , 
(α(p-1)/R )(R+n)= (α(p-1)/R )R. (α(p-1)/R )n= 1.(α(p-1)/R )n  
 
For n < R , the results are in the original list. 
For n ≥ R , we can write R + n = R + kR +m with 0 ≤ m ≤ 
R -1 and m, k ϵZ . 
(α(p-1)/R )(R+n)= (α(p-1)/R )(R+kR+m)= (α(p-1)/R )R. (α(p-1)/R )kR. (α(p-

1)/R )m= 
1.1k. (α(p-1)/R )m=(α(p-1)/R )m 
 
Because 0 ≤ m ≤ R -1, this is in our original list and α(p-1)/R 
is of order R . 
 
So, if the prime Alice and Bob agree to use is of the form p 
= Rq +1, Eve can force them to agree on a key in a 
subgroup of Z*p  of order R by replacing αx and αy with  
(αx)q and (αy)q. Even if Alice and Bob are vigilant, the key 
can take any of R values and the generalized attack poses a 
significant threat to an unauthenticated key exchange using 
the Diffie-Hellman protocol. 
 

COUNTERMEASURES AGAINST THE ATTACK 
To prevent this potentially fatal protocol attack, Alice and 
Bob have several options. The easiest method is to force 
authentication prior to the key exchange. 
Authentication 
The attack we have discussed is not the only man-in-the-
middle attack Diffie -Hellman is vulnerable to. The 

Navpreet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5404-5407

www.ijcsit.com 5406



Appendix details another attack, if no authentication occurs 
prior to the key exchange. To combat these attacks, a 
variation of Diffie-Hellman that ensures authentication can 
be used. An example of such a variation is the Station-to-
Station protocol (STS). STS is a three-pass variation of the 
basic Diffie-Hellman protocol that allows the establishment 
of a shared secret key between two parties with mutual 
entity authentication and mutual explicit key 
authentication. The STS employs digital signatures. A 
digital signature of a message is a number dependent on 
some secret known only to the signer; and, additionally, on 
the content of the message being signed. The STS protocol 
is frequently employed with the RSA signature scheme. 
To employ an RSA signature scheme, public and private 
key pairs must first be generated. 
RSA signature scheme key generation steps: 
1. Generate two large distinct random primes p and q, each 
roughly the same size 
2. Compute n = pq and ϕ= ( p -1)(q -1) 
3. Select a random integer e,1< e <ϕ , such that gcd(e,ϕ ) =1 
4. Use the extended Euclidean algorithm to compute the 
unique integer d,1 < d < ϕ such that ed =1 (mod ϕ ) 
5. The user’s public key is (n, e) and the user’s private key 
is d 
Each user should generate a public and private key 
If we let E denote a symmetric encryption algorithm, and 
SA(m) denote Alice’s signature on m, the protocol is as 
follows 
 
Set up: 
a. A prime number p and generator α of Z*p(2 ≤ α ≤ p-2) 

are selected and published 
b. Alice selects RSA public and private signature keys 

,(nA,eA) and dA (Bob selects analogous keys). Assume 
each party has access to authentic copies of the other’s 
public key. 

 
Actions: 
a.  Alice generates a secret random x, 1 ≤ x ≤ p - 2, 

encrypts the message with its signatures and sends to 
Bob ESA(axmodp). 
A B : ESA(axmodp). 

b. Bob decryptes message using public key of Alice. 
c.  Bob generates a secret random y, 1 ≤ y ≤ p - 2, and 

computes the shared key K=(ax)ymodp. Bob encrypts 
the message using its signatures and sends to Alice 
ESB(aymodp). 
BA: ESB(aymodp) 

d.  Alice computes the shared key k =(ay)xmod p, decrypts 
the encrypted data, and uses Bob’s public key to verify 
the received value as the signature on the hash of the 
clear text 
Upon successful verification, Alice and Bob accepts k 
that is actually shared with Bob, and sends Bob an 
analogous message. 

Eve cannot alter the original exponentials without 
triggering a failure during Alice and Bob’s key agreement. 
This precludes the man-in-middle attack we have focused 
on and defends Alice and Bob’s key exchange against 
several other possible active man-in-middle attacks. 

CONCLUSIONS AND FUTURE WORK 
This thesis investigated and analyzed a particular man-in-
the-middle attack on the Diffie-Hellman key exchange 
protocol. We created an algorithm to carry out the attack 
and demonstrated how it is constrained by the primality test 
used by the attacker. In particular, if the Miller-Rabin 
primality test is used, the algorithm’s complexity is O((log 
N)3 )with N being the input prime number. We showed that 
prime numbers of the form p=Rq+1 with R bounded are 
common with small primes but become increasingly rare as 
larger numbers are considered. In fact, with low bit primes 
such as 128 bits, a reasonably-sized R will give an attacker 
a good chance of the prime being of the desired form. 
However, when large primes such as 1024 and 2048 bits 
are considered, a very large value of R is required to give 
an attacker a reasonable chance of conducting the attack. 
We demonstrated how two techniques, authentication and 
prime order subgroups, can prevent the attack. In fact, it 
appears industry has begun to adopt the prime order 
subgroup technique to defend against the attack. It is 
possible that analyzing the given prime number, capturing 
the required messages, altering those messages, and 
forwarding the messages to the intended recipients will be 
too time-consuming. This would obviously alert the parties 
of possible compromise. In addition, it may be possible to 
alter the attack to compromise communications that are 
authenticated and render several Diffie-Hellman variants 
such as the STS protocol vulnerable. 
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